Adaptation and Combination of NMT Systems: The KIT Translation Systems for IWSLT 2016
نویسندگان
چکیده
In this paper, we present the KIT systems of the IWSLT 2016 machine translation evaluation. We participated in the machine translation (MT) task as well as the spoken language language translation (SLT) track for English→German and German→English translation. We use attentional neural machine translation (NMT) for all our submissions. We investigated different methods to adapt the system using small in-domain data as well as methods to train the system on these small corpora. In addition, we investigated methods to combine NMT systems that encode the input as well as the output differently. We combine systems using different vocabularies, reverse translation systems, multi-source translation system. In addition, we used pre-translation systems that facilitate phrase-based machine translation systems. Results show that applying domain adaptation and ensemble technique brings a crucial improvement of 3-4 BLEU points over the baseline system. In addition, system combination using n-best lists yields further 1-2 BLEU points.
منابع مشابه
The RWTH Aachen Machine Translation Systems for IWSLT 2017
This work describes the Neural Machine Translation (NMT) system of the RWTH Aachen University developed for the English↔German tracks of the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2017. We use NMT systems which are augmented by state-of-the-art extensions. Furthermore, we experiment with techniques that include data filtering, a larger vocabular...
متن کاملQCRI’s Machine Translation Systems for IWSLT’16
This paper describes QCRI’s machine translation systems for the IWSLT 2016 evaluation campaign. We participated in the Arabic→English and English→Arabic tracks. We built both Phrase-based and Neural machine translation models, in an effort to probe whether the newly emerged NMT framework surpasses the traditional phrase-based systems in Arabic-English language pairs. We trained a very strong ph...
متن کاملQCRI Machine Translation Systems for IWSLT 16
This paper describes QCRI’s machine translation systems for the IWSLT 2016 evaluation campaign. We participated in the Arabic→English and English→Arabic tracks. We built both Phrase-based and Neural machine translation models, in an effort to probe whether the newly emerged NMT framework surpasses the traditional phrase-based systems in Arabic-English language pairs. We trained a very strong ph...
متن کاملGuided Alignment Training for Topic-Aware Neural Machine Translation
In this paper, we propose an effective way for biasing the attention mechanism of a sequence-to-sequence neural machine translation (NMT) model towards the well-studied statistical word alignment models. We show that our novel guided alignment training approach improves translation quality on real-life ecommerce texts consisting of product titles and descriptions, overcoming the problems posed ...
متن کاملFBK’s Neural Machine Translation Systems for IWSLT 2016
In this paper, we describe FBK’s neural machine translation (NMT) systems submitted at the International Workshop on Spoken Language Translation (IWSLT) 2016. The systems are based on the state-of-the-art NMT architecture that is equipped with a bi-directional encoder and an attention mechanism in the decoder. They leverage linguistic information such as lemmas and part-of-speech tags of the so...
متن کامل